Topological Models for Some Quadratic Rational Maps

نویسنده

  • V. TIMORIN
چکیده

Consider a quadratic rational self-map of the Riemann sphere such that one critical point is periodic of period 2, and the other critical point lies on the boundary of its immediate basin of attraction. We will give explicit topological models for all such maps. We also discuss the corresponding parameter picture. Stony Brook IMS Preprint #2007/1 February 2007

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mating Siegel Quadratic Polynomials

1.1. Mating: Definitions and some history. Mating quadratic polynomials is a topological construction suggested by Douady and Hubbard [Do2] to partially parametrize quadratic rational maps of the Riemann sphere by pairs of quadratic polynomials. Some results on matings of higher degree maps exist, but we will not discuss them in this paper. While there exist several, presumably equivalent, ways...

متن کامل

The External Boundary of the Bifurcation Locus M 2

Consider a quadratic rational self-map of the Riemann sphere such that one critical point is periodic of period 2, and the other critical point lies on the boundary of its immediate basin of attraction. We will give explicit topological models for all such maps. We also discuss the corresponding parameter picture.

متن کامل

Tessellation and Lyubich-Minsky laminations associated with quadratic maps II: Topological structures of 3-laminations

We investigate topological and combinatorial structures of Lyubich and Minsky’s affine and hyperbolic 3-laminations associated with the hyperbolic and parabolic quadratic maps. We begin by showing that hyperbolic rational maps in the same hyperbolic component have quasi-isometrically the same 3-laminations. Then we describe the topological and combinatorial changes of laminations associated wit...

متن کامل

Renormalisation-induced phase transitions for unimodal maps

The thermodynamical formalism is studied for renormalisable maps of the interval and the natural potential −t log |Df |. Multiple and indeed infinitely many phase transitions at positive t can occur for some quadratic maps. All unimodal quadratic maps with positive topological entropy exhibit a phase transition in the negative spectrum.

متن کامل

On the geometry of bifurcation currents for quadratic rational maps

We describe the behaviour at infinity of the bifurcation current in the moduli space of quadratic rational maps. To this purpose, we extend it to some closed, positive (1, 1)-current on a two-dimensional complex projective space and then compute the Lelong numbers and the self-intersection of the extended current.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007